Creator:
Aben, John Paul
Orsolino, Abigail
Soriano, Ajirah Ramielle

CITCS-2H

Instructor:
Sir Jeffrey, Ingosan

SYSTEM VALIDATION: AUTOMATA
AND BEHAVIOURAL
EQUIVALENCE

Syllabus

System Validation: Automata and Part I

Behavioural Equivalence
Behavioural

Modelling

Part I1.a

[Student Name: } Behavioural

Equivalence

— l
CITCS Department L The Alternating bit Protocol '
.) . D Divergence Preserving Branching Bisimulation | Pal't II.b
University of the Cordilleras e e
D Weak Bisimulation
O ————
D Weak Trace Equivalence Behavioural
D Language, Failure, and Completed Trace Equivalence Equlvalence
D When to use which Behaviour?
D Transition Systems with data, time and probabilities "

System Validation: Automata and Behavioural Equivalence

Objectives:
» To learn to use the behaviour of a computer as an automaton
» To understand and define what it means for two behaviors to be equivalent
» To learn the notion of an internal action and how we can use it to get
insight in behaviour

What is System Validation?
PART I o System Validation is the field that studies the fundamentals of system

communication and information processing.
o It allows automated analysis based on behavioural models of a system to
see if a system works correctly, to guarantee that the systems does exactly
BE HAVI OUR a I what it is supposed to do and to prove the absence of errors.
o It allows to design embedded system behaviour that is structurally sound
and as a side effect enforces you to make the behaviour simple and

MODELLING insightful

What is the essential of studying and understanding Automata and
Behavioural Equivalence?
% Automata will let us to model the behavior of computers and to understand
when two of these behaviors are equal or different.
s It will let us understand and model the behaviour of software-controlled
systems with a simplest and basic way using automata or labeled transition
system.

This work book will talk about automata and process equivalence, we will show
you how you can use Automata to model the behavior of computers, We will also let
you understand the importance of system validation, and the terms and functions of
how the model behavior of systems works.

Key Concepts

Terms Definition

Input

A string fed to a machine which the machine will
determine whether it is part of the language that the
machine was designed for.

Return

The results of running the machine on a given input.
Initially, this will either be accepted or rejected,
indicating whether the input string is respectively part of
the language or not.

State

A resting place while the machine reads more input, if
more input is available. States are typically named.

Start State

It is the state that the machine naturally starts in before it
reads any input. It is also known as the program entry
point.

Accepting State or
Final State

A set of states which the machine may halt in, provided it
has no input left, in order to accept the string as part of the
language.

Dead State A rejecting state that is essentially a dead end. Once the
machine enters a dead state, there is no way for it to reach
an accepting state, so we already know that the string is
going to be rejected.

Transition A way for a machine to go from one state to another given

a symbol from the input. Graphically, a transition is
represented as an arrow pointing from one state to another,
labeled with the symbol or symbols that it can read in order
to move the machine from the state at the tail of the arrow
to the tip of the arrow. Transitions may even point back to
the same state that they came from, which is called a loop.

State machine

A state machine is a mathematical model of computation.
It’s an abstract concept whereby the machine can have
different states, but at a given time fulfills only one of
them.

Rejecting State/
Terminating State

Any State in the machine which is not denoted as an
accepting state. The string is only rejected if the machine
halts in a rejecting state with no more input left/

Automaton as a Model for Behaviour

Objectives:
» To understand the notion of Label Transition system to model behavior.
» To understand the notion of a state and initial state and the important notion
of an atomic action.
» To define the use of a transition, using an atomic action from a state to
another state.
» To identify and understand the traces of a transition system

Robin Milner in 1973, is one of the persons who had a very

particular ideas how they can model the behavior of an IBM
~ \ 360 computer, He said that we are all looking at behavior of
these systems as functions. Functions from input to output,
where in a program takes input and writes the output, but that
is not the correct way of looking at systems. What Milner said
was, systems are always interacting with each other, and input
comes, output comes, it goes all together.

He said that a good model is just like this box
Typem A with buttons on it, and these buttons
represents the actions that you can press, and
they stand for something that happens. For
instance, you are using a computer, then it
could be that you will be typing an A on a

Beep keyboard and that is an action that can happen.
And, there could be an interruption happen,

also, Old computers could still say beep as an output, and they could write
messages on a screen. These are all actions that can happen, and they are input
actions and output actions, and they really can happen in any arbitrary

Show a Massage Internipt

sequence.

Now if you have this kind of behaviour, the first idea is that we take all
these actions (Actions are atomic events that have zero duration.) and

reconsider them as being atomic. Actions are events that really happen in an
instance of time, and we see it as an atomic event.

What is then an automaton? To further understand what an automaton is,
we will have an example: Light Switch

Switch on &

Initial State

Actions

Switch off <=

This light switch can be switched on and switched off, and there are two
actions, namely, switch on and switch off. We model it with these two things
that are called states, and the whole light can be in a state off and can be in state
on, this picture or process are called labeled transition system or state machine
or an automata.

The state off is the initial state wherein the whole system starts, initially the
light is off and now using transitions we can move from state to state when a
particular action is happening. When the light is off we will do then an action
transition switch on to move on to another state which is the state on, and if you
like to switch it off then you do an action switch off and you’ll be then moved
to another state which is the state off. And with these actions and transitions,
we can now define the trace of the system.

Trace = {Switch_on, Switch_off, Switch_on, Switch_off, Switch _on,
Switch_off,...}

A trace is simply switch sequence of actions and that represents the actions you
can do with the system.

Labeled Transition System

objectives:

>

>
>
>

To define a transition system using set theory

To define and understand what unreachable states and deadlock

means in a transition system

To understand how finite or infinite numbers of actions and

transitions work.
To formalize a transition System

What is Labeled Transition System / Automaton?

Automaton or A labeled transition system consists of a set of states
plus a transition relation on states. Each transition is labeled with an
action. It 1s a natural and straightforward way to describe the behavior of
a concurrent system. Labeled transition system is also described as a five

Tuple which represented by the following:

(Sa ACta -, So’ T)

S | It stands for the set of State, these set can either be
finite or infinite set.
Act | It represents the Actions; these actions can also be
finite or infinite.
This arrow represents the transition relation or
> transition function mapping, this transition
relation is a guide or a process that will help you
on how you get from one state to another state via
an action
S, Initial State
T | It represents the set of terminating states

To further understand how the labeled transition works, here are some
examples:

I. First example: Water Cycle in a faucet.
Open Faucet

Close Faucet

As you can see on this example, there are 3 states, the On, Off and an end
state which is a representation of a Terminating State. And to formalize
this transition system it would look like this:

S ={off, on, TS}
Act | ={Open_Faucet, Close Faucet, No Water}

—> | ={(off, Open_Faucet, On),(off, No_Water, end),
(On, Close Faucet, off), (On, No Water, end)}
So | ={off}

T ={end}

» The set of states are the states off, on, and end.
» The set of actions are Open_Faucet, Close Faucet, and No Water.
» The transitions consist of Four, and these are the following:

o Transition from state off with the open faucet action to the state on.

o Next is a state off with the No_Water action to the state end.

o There's also a transition from state on, with the close faucet action
to the state off.

o And a state on with the No Water action to the state end.

» The Initial state is off.
» And the terminating state is end.

This labeled transition picture is based on a real-life process of using a
faucet. Where in if you open a faucet there are two possibilities either the

water will run out or not:
Open Fancet

No Water
— S
No_Waser

And on the other hand, once the water came out on the faucet there will
also be a possibility that the water will run out, or you can just close the
faucet and considered it off.

Close_Faucet

II. Here is another example, and now it is about a transition system with
an infinite number of states:

Eat Sleep

Play
If we formalized that Labeled transition it would be like this:

S [={A,B,C}

Act | = {Eat, Sleep, Play}

—> | = {(A, Eat, A), (A, Sleep, B), (A, Sleep, B, Play, C),
(A,Eat, A ,Eat, A), (A, Sleep, B, Sleep, B),)}

So | ={A}

T =0

» The set of states are the states A, B, and C.
» The set of actions are Eat, Sleep, and Play.
» The transitions consist of an infinite transitions where in; State A can

go with an infinite action of Eat, and State B can also go with an
infinite action of Sleep, and State C can also go with an infinite action
of play, or it can also be an infinite transition of state A with the action
of Eat to the State B with the action of Sleep to the state C with the
action of Play and back to the state A and so on.

» The Initial state is A.

» And the terminating state is an empty set.

But what do you think will happen if we remove some transitions
from the transition system?

To further understand the Labeled Transition System, we will also
define and understand first what is an unreachable and a deadlocked state

II.a Example:

Eat Sleep

Eat Play

Play

In this Example of transition system, if you compare it to the 2" example,
the action transition of Sleep is gone, which means that the B and C states
are now unreachable, and the transition system will just be looping the
Eat action. This is quite common in transition systems, when it comes to
a larger set of transition system, those unreachable states are generally the
states that are not so interesting. And only a small fragment is often
reachable.

IL.b

Eat

Slee

Eat

Play
On this next example we remove the loop of Sleep action and the
transition action of Play, and because of that then you see that there is no
more outgoing transition from state B. Where in If you are in state B you
are stuck there. This is called a deadlock or a deadlock state. And if a
system has a deadlock state this is generally undesirable.

Non-Deterministic Behaviour

Objectives:
» How can we use non-deterministic behaviour to design
behaviour leaving some freedom.
» and compactly model complex behaviour (Milner's
weather freedom)

Machines are categorized into different types. Each type behaves
radically different from other types and tend to appear graphically
different (especially the labels for the transitions). There are two types
of Labeled Transition System and these are; Finite Automata (FA),
and the Deterministic Finite Automata (DFA). It is called a Finite
Automata because we know that given a finite input, the machine will
execute in reasonable finite time and give us a result. This is called
Halting. It is Deterministic if every state has exactly one transition per
symbol, and there are no ambiguities as to which state to go to on a
given symbol of input. The Second type is the Non-deterministic
Finite Automata (NFA).

We say that a state is non-deterministic if, and only if, it has at least

two outgoing transitions within the same label. Example:

Switch_on

Switch_on

|, Switch_off

Switch off

That example is a non-deterministic because the Transition System
of the off state has two outgoing transitions going to different states
with the same label.

Switch on

Switch on

Switch off

Same with the on state

40

Switch_off

To make it simpler here is a simple representation of a
non-deterministic behaviour:

What is now the reason for this non-determination? Milner
already calls it the weather conditions. He said that ‘if you look at

switch, the switch may be influenced by the weather and the weather
may determine whether the switch will work properly or not’.

What he says is, by using non-determinism, in a very compact and
effective way, we can model much more complex mechanisms, for
example:

Here is an example of a deterministic behaviour, and it can also be like
this:

So in that transition system there are a lot of possible action you can do,

either you eat twice before you sleep or you eat first before you sleep

and sleep again and again before you play or you can just eat after that
you sleep and after that you play nonstop, and so on.

But what if you don’t like this kind of behaviour? Because you don’t

want to sleep, you only want to eat and play, or you just want to eat
and sleep.

Using non-determinism, we will redesign that behaviour according on
our desired behaviour, and it would look like this:

As you notice the transition System become a little bit complicated.
But in this behavior, you can now do any action based on what you
wanted to do.

With the use of non-deterministic bahaviour you can easily
manipulate or design the behaviour of your system, it might be a little
complicated, but the output is satisfiable.

ACTIVITY II. Identification

Based on what you’ve learned, answer the following exercise: Instruction: Identify the states, initial state/s, actions, transitions, and
terminating states of the given Labeled Transition Systems. Write your
I. Matching type answers on the box provided.
Instruction: Match the definition listed on set B that corresponds on the terms in A.
Set A S
So
Answer Set A Set B Act
S —>
1. Terminating State | a) It is a Binary relation between state T
transition systems, associating systems that
behave in the same way. set_alarm
2. So b) A rejecting state that is essentially a dead . o s :
end. P i ey .
3. Deadlock c) A set of states which the machine may halt o off) ((on) Sound_alarm
in, provided it has no input left %, A /
4. Act d) A relation that will help you on how you get Ny i '
from one state to another state via an action o "
5. Automaton e) Any State in the machine which is not SoundC k)
denoted as an accepting state. B.
6. Transitions f) A type of a infinite automaton that can move S
to any combination of the states in the So
machine and has a finite number of states. Act
7. State g) these set can either be finite or infinite set. —
8. NDFA h) It is an abstract self-propelled computing T
device which follows a predetermined
sequence of operations automatically. oat
9. Final State 1) It is the state that the machine naturally e
starts in before it reads any input. y P \
10. Bisimulation j) It represents the Actions; these actions can < oL play
also be finite or infinite. -

play

So

Act

So

Act

So
Act

III. True or False

Instruction: Write T if the statement is True, write F if the statement is
False.

1. Actions are events that really happen in an instance of time, and
we see it as an atomic event.

2. Robert Miller said that systems are always interacting with each

other, and input comes, output comes, and it goes all together.
3. Labeled transition system is also described as a five Tuple.

4.The transition from a state going to a single particular next state for
each input symbol is called NDFA.

5. The transition from a state can be to multiple next states for each
input symbol is called DFA.

Behavioural Equivalence

In this section we will be exploring the question, when are two
transition systems equivalent?

We have here a two transition systems that are quite similar, but the
question 1s, are they also the same from a behavioural perspective? the
answer is, it depends on our interactions in the system. In some cases,
they are not the same, and in some cases we would like to consider
them as behavioral equivalent.

To further understand here is the example:

PARTILA

—,
A

BEHAVIOURAL :
EQUIVALENCE

C

Enter_Bar

Enter Bar

states= { a, b, ¢, d}
Act= {enter bar, order tea, order coffee}

On the first transition you will be entering a bar, and you can
choose either to order tea or to order coffee, and on the other hand there
is a transition system that will show us a certain process where in you
either enter bar, then just order tea or enter bar, and just order coffee.

The first transition, 1s where we can make a choice whether to order
tea, or order coffee however on the second transition system, once you
enter the bar, you can either only order a coffee or a tea, for example

you don’t like a tea but you enter the bar going to state C then you don’t
have a choice but to order tea.

In this case we have an interaction with the system, on the first
one we can actually make a choice, however on the second one you
don’t have a choice, so basically we cannot consider these two
transitions systems as the same. And the notion that's belongs to it is
bisimulation equivalent. However These two transition systems are not
bisimulation equivalent.

Another example:

Enter_Bar

Order_tea Order_coffee

Order_tea Order_coffee

Same scenario, but now you are not the customer, you are just
a passer-by in that restaurant, suppose we are looking at the same
behaviors, but now as if we were just watching another customer
ordering their drinks. We do not have interaction, we just observe what
can happen. Example a customer enter a bar and he or she has a choice
whether to order coffee or tea, at last he or she ordered a coffee, then
another customer enter a bar and he or she directly ordered a coffee,
and because you’re just an observer, you will think that it is a the
behaviour wherein that customer ordered coffee, And in that case, we
would like to consider these two as equivalent. And we call this trace
equivalence

The person who worked on all these equivalences
and actually made a big lattice, the van Glabbeek
lattice, is Rob van Glabbeek. He makes the following
observation, namely every way of interacting with the
system induces a new equivalence. And there are
literally hundreds of equivalences depending on how

. you look at a system. Fortunately, bisimulation is a
safe ch01ce always because it preserves every reasonable behavioral
property that we can think of.

BRANCHING BISIMULATION

Objectives:

» To identify how transition systems can be prove or disprove to be
branching bisimilar

» To understand clearly what branching bisimulation

Branching bisimulation is similar with strong bisimulation, The
only difference is that we take internal actions into account.

Here are some Examples:
I. Example:
R This is a Branching bisimulation because both
{ ! bisimulation has the same traces, wherein we
@ @ relate the two initial states, and if we trace their
action the output will be the same, just like the
t | B .. first transition system wherein after the initial
state S we have a tau which means no action and
' then we move to S prime, it is the same to the
@ second LTS where in it has only initial states and
no action has been done.

(Symmetry case)

: - S In these case the relation should be symmetric.
@ @ And that means that the other side, the symmetric
I t case, should hold. Suppose we have, again, two
o states. The right hand side can do a tau step. And
@ then the tau step can be mimic by simply doing

nothing at the left-hand side, and we must relate the
S state to the state T.

II. Another example of a branching bisimilar with symmetry case.

Y P I
=4 ' y T L, a

III. Example:

. @

€€ oo
Qt‘ €@ O @

We relate the two initial states. And then we
mimic the steps at both sides. Therefore if you do an a
at left, you should be able to do an a at the right and
vice versa. This means that these two states would
also be related. And now, if you do the tau at the right,
then we mimic it by simply doing nothing on the left,
and we relates these two states, and that is allowed in
branching bisimulation. And if you look at the last two
related states, then the b step can be simple mimicked
by the other side, and the end states are related again.
And these are branching bisimilar.

IV. Here is an example of a not branching bisimulation:

We do first this initial step, and relate to the initial states. If you
have a tau state, the tau translation at the right hand side, then you can
only mimic that by staying in the initial state at the left hand side. If
the first two are related, then these two states must also be related. But
now we can observe a problem, namely in the states at the left. We see
that a action can be done and this cannot be done at the right, the state
in the middle, right hand side. So there is no a action, and that means
that the two letter states, cannot be related. And that means that they
had to be related if the initial states were related. But in this case they
are not related therefore the initial states can also not be related. This
way we can figure out that these two are not bisimilar.

Strong Bisimulation

In this topic we will be dealing with one of the important notions,
which is what we call the notions of bisimulation.

What is bisimulation?

Bisimulation is a binary relation between state transition systems,
associating systems that behave in the same way in the sense that one
system simulates the other and vice versa. Intuitively two systems are

bisimilar if they match each other’s move or traces.

What is then a Strong Bisimulation??

Strong bisimulation is an equivalence relation that partitions the set of

states in such a way that the set of actions that can be executed to reach
some class is the same for every two states in a class. In addition, the
termination behavior of two related states must be the same.

I. Example:

In this example you can see that we have 2 different transition, to
identify if this two transition is a strong bisimulation we’re going to
compare each state and actions to one another.

Firstly, we say that state A and state B are related because we are
comparing this 2 transition and A and B are their Start state, Second, as
you can see state A has a transition s going to A prime, what we’re

going to do is to compare the action in transition system, A to A prime
and B to B prime. Both has actually the same action transition so were
going to represent the line of B to B prime in a dashed line, and
because both transition systems are the same then we can say that the
two Transition system also relates to each other.

The definition of bisimulation also obliges you to check the other side.
And it would look like this:

& Q ﬂ
S 7 i
|
|
i
i
v
\.-I

R

Now when are two states bisimilar? If we have two states S and T
and we can find a bisimulation relation R that relates them, then we
say that these two states are bisimilar. And if they have two transition
systems, we say that the two transition systems are related if the initial
states are related.

II. Example:

What we have to show is that if there is a bisimulation relation that relates
the these two transition system. Just on the picture above wherein we
extend this transition relation over all transitions of overall states and see
that it satisfies the properties of bisimulation. So, if we have an a step at
the left, then it should be possible to do an a step at the right, and the end
point should also be related..

III. Example:

; I.J-
w

g X

Here is an example of not related transition system. As you can see its
possible that the initial states of both transition system can be related but
on the second states going to b action can also be related but when you go
to the ¢ action you cant say that it cant be related, because the other one
contain 2 actions however the other one contain only a specific action,
therefore these two transition system cant be related.

Every transition system that you have has a unique minimal transition
system, that belongs to it.

And If you have a big transition system, we calculate as minimal
transition system and then we store the behavior in this minimal object.

IV. Example

a

Here we have a transition system that can do three a's and then
repeats itself again. And what you can imagine, is this transition
system can do typical human behavior of doing an infinite number of
a's. On the other hand, there is a much simpler transition system that
can also do an infinite number of a's. And this is actually the unique,
minimal transition system that is bisimilar to the transition system at
the left.

TRACE EQUIVALENT
Objectives:
» To define what it means for two transition systems to be trace
equivalents.

Trace Equivalence:

L Firstly, now we need to know what a trace of a system
is; trace 1s essentially a sequence of actions that can be
@ executed and here we will write down the set of traces

b of this process.

¢
a) The first trace that you can do is simply the empty trace, the trace where

you do no action at all and that's generally written as an epsilon or an
empty set. Trace: {{}}

b) Second we trace the initial state. Trace: {{}, a}

c) Third we then trace the action wherein based on the transition system, we
can make an action a going b and a going to c, if we trace it would be like
this: Trace: {{}, a, a*b, a*c}

But When are two transition systems equivalent? You can say that the two
transition systems are equivalent if the set of traces of it are the same.

[. Example:

d @ d
b c B SR e
Here we have two different structure of a transition system but if we
trace there action they actually has the same traces: they can both have a

empty set and they also has the same initial state, both also can do an
action from ato b and a to c.

©

II. Example:

These two transition are another example of a trace equivalent,
because it may look like a different transitions but if we trace it, the
traces are similar to each other.

The trace of the first transition system are: {{}, a, a=b, a*c}
And on the second transition the traces can be first an empty set as well,
then it has a choices whether to go and stop at a which is a deadlock state
or it is also possible to go on a state and have an action a to b, and a to c.
so if formalize it will become like this: {{}, a, ab, axc} Which means
that those transition systems are equivalent.

III. Example

Same example from the second example but the difference here is that we
put a check mark on one of the deadlock state on the second transition
system. If we trace it, the first transition system will have a: trace: {{}, a,
a+b, a=c} and the second transition state will have a trase of : {{}, a,a*v,
a*b, a*c}

And because of that it wont consider it as a trace equivalent. Therefore the
third example is not a trace equivalent.

Things to remember:
¢ If two states are bisimilar, then they are also trace equivalent.

X/

s If we have two deterministic transition systems and we would like to
know whether they are the same, then it's useful to know that
bisimulation and trace equivalence coincides.

Conceptually trace equivalents are very easy and much easier than the
definition of bisimulation.But trace equivalence relates behaviors that are
sometimes not seen as being equivalent such as behaviors with deadlock
and behaviors without deadlock. And quite remarkably bisimulation is
rather easy to compute and trace equivalence on average is rather harder to
compute by computers.

THE INTERNAL ACTION

Internal action is an action that takes place but cannot be observed
directly.

I. Example
Smt._h on_ U_ Smt._h on

Sxﬁtﬂ;l;!-ff_bén gﬁ{tﬂ_ﬂﬂ
In this transition system you see that there’s a double action of
Switch_on and Switch_off. And if we trace the action it would be like
this:
Trace: {(off), (off, Switch on), (off, Switch on, Switch on), (off,

Switch_on, Switch on, on),)}
but using an internal action it would become like this:

N -6. —S.“?[_t_t_h_ﬂn
Swnﬂ_g.ﬂ'—ﬁ,__ ¥ r

Using a notion invented by Robin Milner. Namely the hidden action,

often written as a tau. The hidden or internal action is an action that can
happen, but which we cannot directly observe, It happens silently
without us seeing it. And in this way, we can hide the actions, and
change the behavior. In this case what will happen is that, switch off
cannot be seen, and then becomes tau action. And switching the light on
cannot be observed, and then becomes a tau action as well. Just like the
example above.

And to make it simpler we can also make the transition system like this:
Swith on

5

® -

N _Swikh of __~

What we did is we removed the two taus because nobody is able to

observe that they are there .and it become simpler, And simpler behavior's

always convenient if you want to study it.

II. Another example:

play/ '\ eat :
2 i - -
¢ @ ﬂﬁi;

In this example you can actually use a tau action, on the first transition
you can do directly an action either you play or eat, but on the second
transition system we have a tau, and lets say that the tau action is a rest
action, either you can directly play or you can just rest (tau) first before
eating, you can also stay on the tau if you wanted to.

III. Example

o @

® o

Internal actions are never observable. And we can always remove
them and simplify the behavior. Just like the example above.

In many cases, we can remove taus but it's not always the case. But
the fact that we can remove actions is really an important tool to that
insight in complex behavior of systems.

ROOTED BRANCHING BISIMULATION

OBJECTIVES:
» To understand the concept of rooted branching bisimulation
» To identify whether a rooted branching bisimulation is similar to a

branching bisimulation

» To understand the notion of root branching bisimulation to resolve a

problem in a behavior.

we can actually combine a behaviours but sometimes, some problem
occur with branching bisimulation.

Example:
if you’re combining a two behaviours it would be like this:

¢ I - .
¢ © ® ¢

- .

We can also simplify it by removing the tau action:

¢ o -

On the first look we can say that its normal and simple combination of II. Example:

behaviours but if we apply rooted branching bisimulation, we can actually Are this two behaviour are rooted branching bisimilar?
see that there’s a difference. - = _ The answer is no, they are not rooted branching
. - bisimilar, we relate the two nitial states but if we mimic
L IL @ @ the action of the first branching bisimulation on the
® @ P | b * second bisimulation, you can see the difference
| ‘ ﬁ AR ® © - @ @ wherein,on the first behaviour you will have an action
- Ob - eb a i ﬁ 7 N doing the step b, but on the other behaviour, you will
- - v o ¢ b first have a tau action before doing the b step, this is a
': typical example of two transition systems that are
TRACES: Q branching bisimilar, but not rooted branching bisimilar.
I. Trace: {{}, a}, {{}, b}, {{},a, b} IIl. Example:
II. Trace: {1}, a}, {{}, b}, {1}, a, b} Are this two behaviour are rooted branching bisimilar?
, , oy The answer 1s yes, because as you can see we relate the two
As you can see both has the same traces but if we compare directly the @ @ initial states, on the first initial state it has an action doing
C(.)rpb%ned transition system, we can say that they are not branching b \® the step b, on the other hand, after the initial state there’s
bisimilar. @ O also an action doing the step b, and after that another action

It 1s a situation where we have two behaviors that are equal and if we .
combine them, we get something that is not equal.

has been done until it reached the final state. This two
O transition system, are rooted branching bisimilar because

after the initial states both has an action doing the step b.
To further understand the concept of a rooted branching bisimulation here B 8 P

are some examples:

Remember: If two states are strongly bisimilar, then they

I. Example: are also rooted branching bisimilar, and if two states are rooted branching
. = bisimilar, they are also branching bisimilar.
@ @ Are this two behaviour are rooted branching bisimilar? The In conclusion branching bisimulation is not always preserved when

b b answer is yes, because they have equal behaviours we combine behaviors, that why we introduce the notion of root
O @ branching bisimulation as a solution of this problem.

ACTIVITY D. | Yes [| No

[. IDENTIFICATION
Instruction: Identify if the traces of following transition systems are ” % s
equivalent. 5
A. [] Yes [| No ‘

‘:h

©
& @

B. [] Yes [] No F.| | Yes | | No

Qs S3dy
AN : * 3
-

i

II.

Instruction: Based on your answer on the first activity, list down the
traces of each transition system and explain why can you say that the
transitions systems are equivalent/ not equivalent.

A. Traces =

Explanation:

Traces =

.

a / "'_‘ Fi |

i b
7 %
ry

Explanation:

a ‘

B. Traces =

Traces =

.'l'- ".
. \ 5
y \ r,
¥, b

_,I’l

a r__.-'. -'._I a a -.'

.-I'.

L

".,_ h

C. Traces =

Traces =

- 0-0-

Explanation:

D. Traces =
Traces =

Explanation:

E. Traces =
Traces =
T | A
a / hoa a/ Y oa
/ b
/ J.‘"f
b

b I

O

Explanation:

1.
Instruction Identify if following transition systems are rooted branching

bisimilar.

A. [] Yes [] No

¥R PARTILB

B. [] Yes [| No

BEHAVIOURAL
EQUIVALENCE

. m o
: . W o
2]

@

A
"

THE ALTERNATING BIT PROTOCOL

The alternating Bit Protocol is a reliable transport protocol of
stop-and-wait family. It uses positive acknowledgement (ACK)and
additional information of one bit to each message exchanged. The
additional bit is used to identify a message in the sequence of messages
sent. Only one bit suffices because no new data message is sent before
the acknowledgement for the previous data message sent is not arrived
(stop-and-wait).

The model we consider for this protocol is build from two automata (for
sender and receiver) which exchange messages through two fifo lossy
channels M (for messages sent from sender to receiver) and A (for
acknowledgements sent from receiver to sender). The sender reads each
message of the producer and sends it through M to the receiver with its
additional bit. Then, it waits for an acknowledgement of this message
(with the same bit) through A. If the acknowledgement does not arrive,
the sender resends the message (with the same bit). When it receives the
acknowledgement, the sender sends the next message read from the
producer with an incremented bit

erm0: / Mim0
Yy
@ Env :fnop /"
ral: &%al/
ral: A%al/ ral: A%a0/
_ 53 32
ral: A%a0/ Env : /nop O
erml :/f hlml

Sender

r'ml M7l /
m mnl: MmO/
eal: f&lal
Rec I /nop Feec /nop
Im[] MmO/
rrrl: Iﬁ.fI?ml,.f
aaD FAalal
Receiver

Protocol Parameters

The following settings are adequate for a simple simulation. For a more
advanced exploration, choose different options and click Change
Settings. This will cause the simulation to restart.

Optionally set the level of control that the simulator user needs
over the medium:

Automatic:

Messages are delivered immediately without loss. This is suitable for
initial experimentation, but limits what can be explored. For example,
message are never lost and never have to be timed out and resent.
Delivery:

Alternatively, message delivery may be controlled - though messages
will still never be lost. Choose this option to allow messages to be
delivered in different orders and to be resent.

Delivery/Loss:

Finally, delivery and loss of messages may be completely controlled.
This is the most comprehensive option, but also the most complex one
to manage.

Protocol Simulation

The protocol simulation shows a time-sequence diagram with
transmitting and receiving protocol entities, and a communications
medium that carries messages. The transmitter simply sends messages
numbered DATA(0) or DATA(1); the content of messages is not
identified. These are acknowledged with ACK(1) or ACK(0)
respectively. Note that if a DATA message is received again due to
re-transmission, it is acknowledged but discarded.

DIVERGENCE PRESERVING BRANCHING BISIMULATION

Stop / t

Divergence

in out

We have here an example of transition system that has 3 states with
an action in and out and an infinite loop of stop that represents a tau.

So it behaves like this, with an in and out and you can do an arbitrary
number of stops in-between. The possibility to do an infinite sequence of
taus is called a divergence.

Stop [t

Now we have two transition systems and this two transition systems
are the same, we just removed the loop of stop or the tau, because
Branching bisimulation removes divergencies.

A property of branching bisimulation is the following:

R

% That all states that you have on a tile loop will be merged

R/

«» and the tau loop will be removed.

To improve the situation we would like to have a notion of branch

bisimulisation that recognizes divergencies explicitly. And therefore we
define the notion of divergence preserved through branching bisimulation.
And that is just ordinary branching bisimulation with one extra property

A. Example:

- @

t S i

Based from the example, we have two states that are related to each other
therefore if one state can do an infinite number of taus, the other
statements should also be able to do an infinite sequence of taus. And it's
the only extra condition that we add to divergence preserving branching
simulation.

+ Divergences as infinite sequences of internal steps
+ Branching bisimulation does not preserve divergencies
R/

¢ If divergent behaviour is important, divergence preserving branching
bisimulation must be used

LANGUAGE FAILURE AND COMPLETED TRACE
EQUIVALENCE

Label transition systems are traditionally used not in the study of
behavior of processes, but in the study of languages and compilers,
parsing, and scanning.

Suppose we have a text and we want to recognize the word bag, we
also want to recognize the word belt and the word bear.

If we convert it on a label transition system it would be like this:

o

v’

o o O\
.h_.e.a_._r__‘ ”

.E. 1 .:‘

Here we have words and that are typically traces ending in a
termination symbol. Two transition systems are equal if they recognize
exactly the same words, namely, beside the two transition systems are
language equivalent if they have exactly the same set of words.

But as you observe the transition system carefully you'll notice that
a problem can occur in this kind of transition system. Where in if you
expect the word bear then you take a branch of this transition system.
But if the second letter then turns out to be an A, we have to backtrack
and take the second branch, and that is inefficient.

What would be efficient is to make a deterministic transition system I. Example:
that is exactly language equivalent to this original. And that can be done
in this way:

a g ! a
Trace: {ab. ac} Q O
c

o' © GED
00006

O

=
3056@

6o o

This is an example of a completed trace equivalence because the traces
of these two behaviour are {ab, ac}.

this is an efficient way to recognize the word immediately. The question
to make scanning efficient is that you simply have to constrict a
language equivalent deterministic labeled transition system.Which is

equivalent to the set transition system recognizing the set of words. II. Example
Another Example:
. A completely different equivalence is completed trace O O
O equivalence, Suppose we have a behaviour where there's i
“" an a, moving on a state where there's an action b, i O
a
X moving forward on a state where there's an action c, and O
' Tm=e=: {32 because we do not observe anymore then we can say that
% the svstem is in deadlock b Trace: {a, ab}
_ ystem is in deadlock. " Trace: {ab}
l_.-"'_"‘w-.ll W ;
'\L__Ji What we can say is that the completed trace of the O
Desdled: | SYStem is typically every trace that ends in a deadlock or

Ox that ends in a terminating state.

Here is then an example of not completed trace equivalence, actually it is can see that {a, b, c} are actions that cannot be done. So this set and all
the same on the first example, the only thing is that we removed the c their subsets, these two sets and their subsets are refusal sets

action, and because of that the transition become a not complete trace

equivalence, because on the first transition only an {ab} action can be

perform, how ever on right transition it can do a two action {a, ab}, and Given that we know what refusal sets are, we define a notion of a
based on the traces of these two transition it clearly states that they’re failure pair. And a failure pair is the following.

not equivalent.

Now we proceed to another equivalence which is called as Failure(s) Failure pair: trace and the refusal set where the trace ends.

Equivalence, It is the complete trace congruence under standard) (e,U), US{b, c, v}
operators that are applied on behavior, It starts with the so-called notion o
Refusal set: set of actions that cannot be done in a state. (a, U), US{a, v}
(b,e,N}bcp (BN} {e N} {B} {c} V) b ;
a (b U) (acr U): U;{G’, b.r C}
a
: A =
fa, vV} and subsets. U&ia, b, ¢, vV} (acv,U), USia, b, c}

b o

fa, b, ¢, V} \
and subsets. ta, b, ¢} and subsets.

of a refusal set.

In initial state of the diagram, we cannot do the b, the ¢, and we can
also not terminate. But there's another refusal set because we can also
not do a b and a c. And actually any subset of this largest refusal set is
also a refusal set. Even the empty set is a refusal set. In the second state,
we can see that we cannot do an a and a termination. And that means that
a and terminations are all refusal sets. And in this state at lower left part,
we see that {a, b, c, tick} are actions that cannot be done. And here we

WEAK BISIMULATION

In 1918 Robin Milner defined a weak bisimulation, As an
equivalent as a bisimulation for a hidden actions. And in 1989,
Glabbeek and Weijland defined a notion of branching
bisimulation. And actually, weak bisimulation and branching
bisimulation are quite similar.

In branching bisimulation, even if you have more than one state and only has a
tau action then its can be possible if you relate it with one state for example:

— & .F! ;. .
@ @ @ @

Another case in branching bisumulation was that if we could do a step from
two related states. And could do an A step, and mimic that, then it could be
mimicked by a number of taus and then an A step. The final states are related
and the state before the action a should also be related on the S state. Just like
the transition system on the right

In weak bisimulation, the first case is exactly the same so if we do this tau,
we can mimic it by doing nothing and add points that should be related.

And then here there's a difference if we have two states and these are related.
And we do an A step in one state. It's allowed to mimic it by doing a number
of taus. Then doing an A. Then doing again a number of taus. And then only
the endpoints should be related. So, and this is very different than branching
bisimulation.

Example:

R
|

a

@

-

-0 00

In addition compared to branching bisimulation, Branching bisimulation can
be calculated far more effectively than weak bisimulation.

WEAK TRACE EQUIVALENCE

Objectives:
» To identify what is weak bisimulation
» To understand the essentials of understanding weak bisimulation

Weak Trace bisimulation ignores silent transitions in a very general
way. It requests that a transition labeled with an action is simulated by a
transition labeled with the same action but preceded and followed by a
sequence of T transitions.

Two transition systems are weak trace equivalent if, and only if they have
the same set of weak traces. And weak traces are those traces that tiles are
omitted.

A. Example:

If you look at this example. We have the following weak traces.
Namely the empty traces weak trace. The tracer to A. AB but not A tao B
we omit the tao. And AC are the tracers of this system.

Note:You should only apply weak trace reductions on relatively small
transition systems.

B. Example

Based on these two transition system. you are asked the answer the
question, are these two transitions systems weak trace equivalent?

[IYes[|No

It's obvious that they are equivalent, because they have the same set of
weak traces. And you can immediately see that weak trace equivalence
has a number of unpleasant properties. Look for instance at the b at the
left. You can see that you can end up in a state where you can do the b,
but not an a. But this is not what's happening at the right site. The
branching structure of processes is not preserved by the trace equivalent.

That is why we are always a little bit hesitant in using it. But
sometimes it is useful, because if you have a small transition system
applying weak trace equivalence can make it even smaller and, therefore,
more insightful.

Advantages:
< Weak trace reduction allows to remove all the internal action from the
behavior

Disadvantages:

< There is no unique minimal transition system

< If you apply a weak trace reduction. Then it can be very hard to
calculate, and it can be very time consuming.

< And it can actually result in much bigger transition systems.

When to use which Behavioural Equivalence?

Objectives:

» To know when we have to use which equivalence.
» To identify the major process equivalences.

» To know when should we apply behavioral reduction

Different behavioral equivalences:

Strong bisimulation, is one of the very convenient bisimulation to use,
because it is always safe. And if you do not know what to use, restrict to
strong bisimulation.

Trace equivalence, on the other hand, is attractive because it can reduce
the behaviour much more. But it will not preserve the branching behavior,
for instance, deadlocks.

Branching behaviour, is were we consider two system as equivalent only
if every computation, that is, every alternating sequence of (visible and
silent) actions and states, of one system has a correspondent in the other.
It is where we have seen that we would not like to see these as equivalent.
But from the perspective of trace equivalents, they are equal.

Failures equivalence preserves the deadlocks. It preserves of some the
branching structure of processes, and in particular, it preserves equality
under the application of ordinary process operators.

Also Divergence preserving branch bisimulation is always safe to use.
It removes all internal steps, but it preserves all the other structure of the
behavior. If you're not interested in divergences, so we find it's allowed to
remove tau-loops.

Then we can actually also apply branching bisimulation. And tau-loops
can typically can mean that there is some internal activity going on that
takes a lot of time.

Weak bisimulation is for all practical purposes equal to branching
bisimulation. Whether you use branching bisimulation or weak
bisimulation in the settings up till now, it really doesn't matter.

Weak trace equivalence on the other hand can be very attractive because
it removes all the taus from the behavior. And f you have many taus, but
would like to get rid of them, this is the equivalence to use. But it does
not preserve the branching structure of the behavior, and that means that
the behavior can really look different after applying this.

TRANSITION SYSTEM WITH DATA, TIME AND
PROBABILITIES

Objectives:
> to indentify different extensions of labeled transition system.
» to know the purpose of a Label Transition Systems

Label Transition Systems are used for many more purposes and
therefore there are many extensions of label transition systems. There are
different extensions to transition systems and one of the extension is
extension with data.

I. Example:

Gat (d) Deliver (d) D={d, d:}

The 1dea is that with every action we can simply take a datum after it,
between breakage, so here we see, get(d). That means we get a particular
datum of a particular sort. And if the data is finite, and the data consist of
datum one and datum two.

Drelivren(dn) Gret (da)

Get (da) Delrrer(ds)

Here is a transition system and typically a potential transition system
that could describe the behavior of this system. It is where we actually
read data one and then deliver data one. Or we can decide to read, get data
two and deliver data two. And in both cases after delivery go to the initial
state. Get a next data and deliver it again. Most important point is that you

can add data to actions in this way and so describe components that sent
data back and forth.

An alternative extension is the extension with time. So there are many
different forms in which time is added to transition systems. A very
straightforward one is this where you typically add a time-stamp to an
action.

Tick@1

Tick@?2

Tick@3

And we can describe this clock. And this clock ticks, and it ticks at
time one, and then at time two, and then at time three and this goes on
indefinitely. So this is an infinite transition system.

One of the properties of describing slightly more realistic behavior is
that it quickly can become complex. Assuming that we have this clock
but it's not completely a stable clock. So it can take a time, one, two, three,
etc. But it can also click a tick a little bit earlier. Namely, X times 0.9 or it
can take a little bit too late X time 1.1 and this can go on forever. So the
typical behavior then becomes this. It can have two early ticks and then
the second tick is at time 1.8 or it can have two late ticks, or it can have
any combinations of late and early ticks. And then, this is typically the

behavior that you get. So here it grows and it grows even more. And this
makes us feel quite intriguing, because the standing such complex
behavior is often a quite difficult task.

Tick@0.9 Tick@! - Tick@1.1

Tick@1.8 Tick

&)

2 Tick@2 2

i

Tick@2.7 Tick@3 Tick@3 3

Another extension is an extension with probabilities. Currently this is
heavily under investigation in the scientific community and the idea is the
following. We can have actions in the same way as we had to before but
we can now also have probabilistic choices and that's often denoted like
this. So, this means that you go after doing the A, the probability a half to
which state where you can do a B.

With one-thirds to a state where you can do a C. And with one-sixth to a
state where you can do a D. And this second choice, is really a
probabilistic choice in the sense of probability theory. So we have a very
strange situation where we have normally terministic choices that we
cannot influence and we have probabilistic choices that are governed by
probabilities. So this is very weird behavior, where you can normally
terministically go to a state with one distribution or to a state with a
different distribution.

ACTIVITY

1. Is the behavior of this two transition system are equal, in the sense of
divergence sensitive branching bisimilarity?

I
s e Sound alamm

,f""- S ,-'f- T /_,— | _‘\\

\ Il,-"' l"'.
", 9 | t _,‘ | Sound alarm
: / \ : J
"'._ l‘"'--\.__ ey S 4 \\H,______--' '-'____-_ --__‘_,.-'
\ _______r_ — f-"ll
N
™,

a a a a
['t d c “' e d
- - - [
b b b b
- - ¢ é
e f f e
- -

4. Are these two transition systems weak bisimilar?

a
@
J i i ‘\hi

i

I. If you fully understand all the lessons create the DFA and an NDFA of the

following traces:

1. Trace: {{}, a, ab, abc, abcd, aab, aabbc, aabbcc, aabbcedd....}

2. Trace: {{}, 1, 10, 100, 1000, 10000,

3. Trace: {{},1,10,101, 110, 1101, 1

-
110, 11101, ...}

