
Time and Space Efficiency Comparative Study between Non-
recursive and Recursive Tower of Hanoi Algorithm
Cabural, Adrian A.
Computer Science Student

Governor Pack Road, Baguio City, Benguet

shlmaesntscbrl@gmail.com

Balaquit, Jober Zeal P.
Computer Science Student

Governor Pack Road, Baguio City, Benguet

bjoberzeal@gmail.com

Recile, Erl Jean S.
Computer Science Student

Governor Pack Road, Baguio City, Benguet

caccojohn097@gmail.com

Soriano, Ajireh Ramielle
Computer Science Student

Governor Pack Road, Baguio City, Benguet

ajisoriano02@gmail.com

ABSTRACT
The Tower of Hanoi (TOH) is one of the solitaire games which
is commonly used in psychology problem solving. Various
approaches in solving the problem had been proposed over the
years. Focusing on the field of Computer Science comes the
introduction of frequency count(FC). Determining the FC
through Mathematical Analysis (MA) can compute for the Time
Efficiency (TE) or the number of steps it takes to solve the TOH
problem that is eminently based on the number of inputs (n).
Alongside with FC is Memory Requirement (MR), the MR of an
algorithm is highly based on the data structure and variables
involved. Computation of MR through MA defines the demands
of an Algorithm when it comes to Space Efficiency (SE). The
purpose of this research is to determine which between
Recursive Tower of Hanoi Algorithm (RTOHA) and Non-
Recursive Tower of Hanoi Algorithm (NRTOHA) is more
befitting in solving problems like the TOH. Given the number of
disks the study then proceeds in implementing and making use
of the NRTOHA and RTOHA in solving the puzzle,
Mathematical analysis of both Algorithm shows proof on the
Time and Memory required in utilizing the proposed algorithms.
TE of RTOHA is lower compared to NRTOHA, given the fact
that the order of growth (OG) is more complex than of RTOHA.
Hence, NRTOHA requires more memory rather than RTOHA.

Keywords
Mathematical Analysis, Non-Recursive/Iteration Algorithm,
Recursive Algorithm, Tower of Hanoi, Frequency Count,
Memory Requirement

1. INTRODUCTION

The Tower of Hanoi is a notable puzzle, invented in the 19th
century, that has been used for years. It helps people how to
determine the results of their action when breaking down a goal
into subgoal. The Tower of Hanoi puzzle is composed of three
rods and doughnut-like disks that can fit into these rods. At first,
they are placed in a pyramid form at the first rod (see Image 1).

To solve the puzzle, the player must move the three disks at the
other end of the rod in pyramid form. Three rules were
implemented and these are: (1) you cannot transfer disks
simultaneously; (2) you cannot place a bigger disk above a
smaller one; (3) you cannot set aside a disk. There are specific
number of moves that depend on the number of disks. It is
calculated by 2N-1, where N is the number of disks.
This simple puzzle helps people to increase their performance in
problem-solving in terms of speed and number of moves that is
done [1][9][10].

Reminder: The puzzles objective is to transfer all disks from rod
A to rod C, in resort to rod B, one at a time without placing a
larger disk on top of a smaller disk.

Images 1 and 2: All disk must first be moved to rod A. Disk 1
makes the first move, transferring towards rod C.

Images 3 and 4: Disk 2 follows moving from rod A to rod B,
Disk 1 again, transfers from rod C to rod B, on top of Disk 2

mailto:bjoberzeal@gmail.com

Images 5 and 6: Rod C is empty and only Disk 3(n-1)/Biggest
Disk is left on rod A, Disk 3 moves to the empty(null) rod C. and

Disk 1 goes back to rod A.

Images 7 and 8: Disk 2 follows up with Disk 3, Disk 2 is placed
on top of Disk 3. Finally Disk 1 transfers to rod C on top of

Disk 2 solving the puzzle.

Mathematical Analysis of Non-Recursive Algorithms is just by
counting the number of basic operations of a series of formulas
or code. An Iterative or Non-recursive Algorithm is numerous
times that a loop is cycled to do an operation. Loops will
become a series of sums for the number of times that the
operations inside the loop are processed.

Mathematical Analysis of Recursive Algorithms involves
repeatedly counting the number of series’ basic operations when
calling the same function within its function.

Mathematical Analysis on both algorithms includes the count of
frequency when an operation is processed and necessary
memory for each algorithmic code.

The objective of this study is to find the time complexity of both
algorithms, usage, and other variables that might affect the
algorithms themselves. The results between the two algorithms
will then be analyzed and compared considering the criteria of
TE and SE..

2. REVIEW OF RELATED
LITERATURE

Time series is one of the most frequently used forms of data
obtained from physical or computational experiments. Time
series analysis techniques have been extremely useful in many
fields, including economics, geology, meteorology, material
science, medical science, and so on. The major goals in
evaluating time series analysis are twofold. This investigates the
structure, features and patterns of the time series data itself using
statistical techniques like regression methods, spectral analysis,
stochastic modeling and in our case, which is mathematical
analysis of recursive and iterative algorithm.[2][10]

Most researchers believe that the algorithmic solutions for the
Tower of Hanoi proposed by Frame and Stewart are optimal.

Interestingly, many also feel no need to prove this fact, even if it
was pointed out already in 1941 by the problems editor of the
American Mathematical Monthly[6][9]

F(n,p) ← reflects Frame's Algorithm
Fi(n,p) ← same as F(n,p), but no monotonicity is req.;

S(n,p) ← reflects Stewart's Algorithm
Ai(n,p) ← reflects an algorithm taking into account all

partitions;
A (n,p) ← same as F(n,p), but no monotonicity is req.

Equation Proposed to solve multi-peg Tower of
Hanoi[6][7][8]

The time complexity of iteration can be found by finding the
number of cycles being repeated inside the loop.[3][5][13]

TC =
i←item

n

� (u − l

+ 1)
u←user

n

�

Sample Equation for Iterative Algorithm[3][5][11]

You can find the time complexity of recursion by finding the nth
recursive call value in terms of previous calls. Finding the
destination case in terms of the base case therefore gives us an
idea of the complexity of the time of recursive
equations.[4][5][11]

Usually, recursive versions are appropriate for simple hardware
due to the lower effort required for their real time operation
when compared to the non-recursive ones.[5-8][11]

3. METHODOLOGY
The methodology section discusses and illustrates the
pseudocode of both Non-Recursive and Recursive method of the
Tower of Hanoi Algorithm, given:

n == 3; n is the number of disks
peg == 3; peg is the number of rods, named ‘A’, ‘B’

and ‘C’
3.1. Pseudocode of Non-Recursive

Algorithm
Wherein:

Source Peg = Rod 1 = Rod ‘A’ = from_rod
Auxiliary Peg = Rod 2 = Rod ‘B’ = aux_rod
Destination Peg = Rod 3 = Rod ‘C’ = to_rod

1. Calculate the total number of moves required:
2n +1

n ← number of disks.

2. If the number of disks (i.e. n) is even then interchange
destination peg and auxiliary peg utilizing the bubble
sort algorithm.

if (n % 2 == 0)
{

char temp = pole3;
pole3 = pole2;
pole2 = temp;

}

3. for i = 1 to total number of moves:

if i%3 == 1:
legal movement of top disk

between source peg and destination
peg

if i%3 == 2:
legal movement top disk

between source peg and auxiliary peg.

if i%3 == 0:
legal movement top disk

between auxiliary peg and
destination peg.

Repeat step 3 until all disks are in destination peg/Rod ‘C’
4. End.

3.2. Pseudocode of Recursive
Algorithm

This algorithm makes use of only one method that contains
conditional statements which stimulates the repetitions of steps
in solving the problem.
Wherein:

Source Peg = Rod 1 = Rod ‘A’ = from_rod
Auxiliary Peg = Rod 2 = Rod ‘B’ = aux_rod
Destination Peg = Rod 3 = Rod ‘C’ = to_rod

1. Initialize recursive method

towerOfHanoi (n, ‘A’, ‘C’, ‘B’);

2. If (n == 1), Move disk from A to rod C
Else, recall method in step 1 with following

parameters:
towerOfHanoi(n-1, from_rod, aux_rod,

to_rod);
Once again, recall method in step 1 with the following

parameters
towerOfHanoi(n-1, aux_rod, to_rod,

from_rod);

Repeat step 2 until all disks are in ‘to_rod/Rod C’.

3. End.

3.3. Mathematical Analysis
In relation with both the following pseudocode shown above, the
researchers will then develop a program using java code. Line
by line, the frequency count and the memory requirement of
both algorithms will be determined using mathematical analysis
before comparing the two algorithms.

4. RESULTS
4.1. Time Efficiency/Frequency

Count Comparison
In regards to the Recursive TOH Algorithm, the following are
changed to simplify procedures:

● towerofHanoi = TOH
● source_peg = A
● auxilary_peg = B
● destination_peg = C

Table 4.1

Steps NR-TOH Algorithm R-TOH
Algorithm

Step 1 n n

Step 2 if(i%3 = = 1)
moveDiskBetwee

nTwoPoles(A, C,
pole1, pole3);

if(i%3 = = 2)
moveDiskBetwee

nTwoPoles(A, B,
pole1, pole2);

if(i%3 = = 0)
moveDiskBetwee

nTwoPoles(B, C,
pole2, pole3);

if(n==1)

Step 3 1 case 1 case

Step 4
(Frequency
Count)

2n
i=1

n+1

� 1 = (n + 1 − 1

+ 1)2n

2n2 + 2n

TOH(n, A, C, B)

TOH(1, A, C, B)
= 1

TOH(2, A, C, B)
= TOH(1, A, C,
B) +1+ TOH(1,
A, C, B)
= 3

TOH(3, A, C, B)
= TOH(2, A, C,
B) +1+ TOH(2,
A, C, B) =
3+1+3
= 7

TOH(4, A, C, B)
= TOH(3, A, C,
B) +1+ TOH(3,
A, C, B) =
7+1+7

= 15

TOH(5, A, C, B)
= TOH(4, A, C,
B) +1+ TOH(4,
A, C, B) =
15+1+15
= 31

TOH(6, A, C, B)
= TOH(5, A, C,
B) +1+ TOH(5,
A, C, B) =
31+1+31
= 63

.

.

.
TOH(n, A, C, B)
=

2 n − 1

Step 5
(Order of
Growth)

Given F.C =2n2 + 2n
O.G. = O(n2)

Given F.C =
2 n − 1

O.G. =
O(2n)

4.2. Space Efficiency/Memory
Requirement Comparison

Table 4.2

NR-TOH
Algorithm

R-TOH
Algorithm

Memory
Requirement

2n2 + 2n + 28 10n − 10

5. DISCUSSION
5.1. In accordance with Table 4.1

As a result, The number of frequencies in the Recursive
approach has an exponential value rather than the Iterative
approach. The Execution Time of the Recursive Algorithm is
highly complex meaning it is very slow compared to the Non-
Recursive Algorithm.

5.2. In accordance with Table 4.2
In this table we made a comparison of Memory

Requirement of both algorithms. We compute the necessary
memory for iterative algorithm by its method to loop for solving
the Tower of Hanoi problem. As for the Recursive algorithm, we
calculate it within its method by the number of times the method
is named.

6. CONCLUSION
As for the usage of either of these techniques is a trade-off
between time complexity and size of code. If time complexity is
the point of focus, and the number of recursive calls would be
large, it is better to use iteration. However, if time complexity is
not an issue and shortness of code is, recursion would be the
way to go.

Recursion involves calling the same function again, and
therefore, has a very short code length. However, as we saw in
the analysis, when there is a considerable number of recursive
calls, the time complexity of recursion can become exponential.
Therefore, in shorter code, the use of recursion is advantageous,
but higher time complexity. Iteration is a code block repetition.
This involves a larger size of code, but the time complexity is
generally lesser than it is for recursion.

With regard to the overhead, Recursion has the overhead of
repeated function calls, which is due to repetitive calling of the
same function, the time complexity of the code increases
manifold. There is no such overhead involved in iteration.
Infinite Repetition in recursion can lead to CPU crash but in
iteration, it will stop when memory is exhausted. Infinite
recursive calls can occur due to some errors in specifying the
base condition, which never becomes incorrect, which keeps
calling the function, which can lead to machine CPU crashing.
Infinite iteration due to a mistake in iterator assignment or
increment, or in the terminating condition, will lead to infinite
loops, which may or may not lead to system errors, but will
surely stop program execution any further.

7. RECOMMENDATIONS
For future research, the study must stick with the comparison of
both Algorithms and the computation of Time and Space
Efficiency must be applied on other problem solving puzzles
such as the Tower of London Puzzle, slightly similar to TOH.
Second, The study still needs additional proof, more analytic
and computation methods can be included to justify the results
in this paper without increasing the number of pegs.

8. REFERENCES
[1]Noyes, J., & Garland, K. (2003). Solving the Tower of Hanoi:
does mode of presentation matter?. Computers In Human
Behavior, 19(5), 579-592. doi: 10.1016/s0747-5632(03)00002-5

[2]Ghosh, S., & Dutta, A. (2018). An efficient non-recursive
algorithm for transforming time series to visibility graph.
Physica A: Statistical Mechanics and Its Applications.
doi:10.1016/j.physa.2018.09.053

[3]Ghosh, S., & Dutta, A. (2018). An efficient non-recursive
algorithm for transforming time series to visibility graph.
Physica A: Statistical Mechanics and Its Applications.
doi:10.1016/j.physa.2018.09.053

[4]Khadem, M. M., & Forghani, Y. (2019). A recursive
algorithm to increase the speed of regression-based binary
recommendation systems. Information Sciences.
doi:10.1016/j.ins.2019.10.072

[5]Rocha, R. V., Coury, D. V., & Monaro, R. M. (2017).
Recursive and non-recursive algorithms for power system real

time phasor estimations. Electric Power Systems Research, 143,
802–812. doi:10.1016/j.epsr.2016.08.034
[6]Klavžar, S., Milutinović, U., & Petr, C. (2002). On the
Frame–Stewart algorithm for the multi-peg Tower of Hanoi
problem. Discrete Applied Mathematics, 120(1-3), 141–157.
doi:10.1016/s0166-218x(01)00287-6

[7]J.S. Frame, Solution to advanced problem 3918, Amer. Math.
Monthly 48 (1941) 216–217. doi: 10.1016/j.ins.1986.10.083

[8] P.K. Stockmeyer, The Tower of Hanoi: a historical survey
and bibliography, manuscript, September1997 Discrete Applied
Mathematics, 120(1-3), 141–157. doi:10.1016/s0166-
218x(01)00287-6
[9]Hinz, A. M., & Petr, C. (2016). Computational Solution of an
Old Tower of Hanoi Problem. Electronic Notes in Discrete
Mathematics, 53, 445–458. doi:10.1016/j.endm.2016.05.038

[10]Minsker, S. (2014). The Cyclic Towers of Antwerpen
problem—A challenging Hanoi variant. Discrete Applied
Mathematics, 179, 44–53. doi:10.1016/j.dam.2014.03.011

[11]Hinz, A. M., Kostov, A., Kneißl, F., Sürer, F., & Danek, A.
(2009). A mathematical model and a computer tool for the
Tower of Hanoi and the Tower of London puzzles. Information
Sciences, 179(17), 2934–2947. doi:10.1016/j.ins.2009.04.010

[12]Welsh, M. C., & Huizinga, M. (2005). Tower of Hanoi disk-
transfer task: Influences of strategy knowledge and learning on
performance. Learning and Individual Differences, 15(4), 283–
298. doi:10.1016/j.lindif.2005.05.002

[13]Ke, Y. (2019). The new iteration algorithm for absolute
value equation. Applied Mathematics Letters.
doi:10.1016/j.aml.2019.07.021

[14]Lu, X.-M., & Dillon, T. S. (1995). Parallelism for multipeg
towers of Hanoi. Mathematical and Computer Modelling, 21(3),
3–17. doi:10.1016/0895-7177(94)00210-f

[15]Wu, J.-S., & Wang, Y.-K. (2003). An optimal algorithm to
implement the Hanoi towers with parallel moves. Information
Processing Letters, 86(6), 289–293. doi:10.1016/s0020-
0190(03)00226-6

